
Proceedings of the academic track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference,

incorporating the GISSA 2008 Conference
29 September - 3 October 2008, Cape Town, South Africa

ISBN 978-0-620-42117-1

A comparison of data file and storage configurations for efficient

temporal access of satellite image data

Asheer Bachoo1, Frans van den Bergh2, Albert Gazendam3

1Remote Sensing Research Unit, Meraka Institute, CSIR, South Africa, abachoo@csir.co.za

2Remote Sensing Research Unit, Meraka Institute, CSIR, South Africa, fvdbergh@csir.co.za
3High Performance Computing Research Group, Meraka Institute, CSIR, South Africa,

agazendam@csir.co.za

Abstract
Recent improvements in sensor technology, together with increases in data acquisition

frequency, have resulted in a surge in satellite data volume. A single tile from the gridded MODIS

products, spanning a region of interest of approximately 10° by 10°, is stored as an image

containing close to six million pixels, with data in multiple spectral bands for each pixel. Time

series analyses of sequences of such images in order to perform automated change detection is a

topic of growing importance. Traditional storage formats store such a series of images as a

sequence of individual files, with each file internally storing the pixels in their spatial order. To

construct a time series of a single pixel through time using such traditional storage solutions would

require accessing hundreds of very large files, resulting in significant overheads which limit high-

throughput analyses. We aim to reduce this bottleneck by restructuring the storage scheme for

typical satellite imagery as temporal sequences in order to reduce overheads and improve

throughput. Four data structures (using the hierarchical data format (HDF5), network common

data format (netCDF) and a native file system approach) are implemented and compared in a

series of experimental read tests to determine which format is most appropriate for implementation

in the CSIR Cluster Computing Centre's facilities.

1 Introduction and background

The management of sequences of very large images can be divided into two groups: database

management systems (DBMS) and data files. Using a DBMS, images are imported into and stored

using the database internal format. The DBMS usually has a relational database model where data is

mailto:abachoo@csir.co.za
mailto:abachoo@csir.co.za
mailto:fvdbergh@csir.co.za
mailto:fvdbergh@csir.co.za3
mailto:agazendam@csir.co.za

perceived as a structured table. This format is not suitable for the storage of large and complex

multidimensional discrete data such as image sequences. The data model implies that pixels are

stored in tables or fixed size binary large objects (BLOBs). BLOBs are unstructured sequences of

bytes and, hence, not easily compatible with some of a DBMS’s native types. User defined

procedures for data analysis suffer the same fate (Abiteboul et al., 2005). Database and related

technologies must be combined in order to serve the scientific world since support for efficient

multidimensional data retrieval is limited (Baumann et al., 2003; Skiffington and McKelvey, 2007;

Gray et al., 2005).

Techniques for raster data storage and efficient access in databases have been presented in the

literature. Reiner et al. show that a tiling scheme is the most effective strategy for handling large

image data in a database (Reiner et al., 2002). Data is split up into subimages and when a region of

interest is requested, only the relevant tiles are accessed, resulting in significant I/O bandwith

savings. Baumann et al. incorporate tiling, spatial indexing and compression strategies into their

raster database (Baumann et al., 1997, 2003). Compression improves disk I/O bandwidth efficiency,

while spatial indexing allows quick retrieval of the identifier and location of a required tile. The

CONCERT architecture uses arbitrary length sequences of fixed page sizes to store image data

(tiles) (Relly et al., 1997). These page ranges allow a single linear address space to be accessed

directly. Data buffering is controlled using memory mapping of disk pages.

Databases do not intrinsically support large n-dimensional arrays, nor do they support efficient

mapping of them to 1-dimensional space. Hence, flat file storage of large satellite imagery is an

attractive option for data management and retrieval. The overhead incurred by using a database is

avoided because the file metadata becomes the “manager”. Several data files can cummulatively

store terabytes of information which makes them popular in the scientific community.

Data formats such as HDF51 and netCDF are platform independent, self-describing and support

the storage of multidimensional arrays (Rew and Davis, 1990; Tan et al., 2000). They can be

viewed as database systems since they have a schema for metadata and data manipulation strategies.

Previous comparisons between HDF5 and netCDF have looked at their parallel implementations: Li

et al. compare parallel netCDF and HDF5 in a series of tests, concluding that parallel netCDF

achieves higher parallel performance than HDF5 (Li et al., 2003). In contrast, other researchers

show that the two file formats are, in fact, comparable in performance (Chilan et al., 2006).

Several experiments have been conducted in the domain of large array storage and its optimized

I/O. Array chunking and its effects on I/O performance within the context of the HDF file format is

reported in (Velamparapil, 1998). Sarawagi and Stonebraker (1994) describe methods for efficient

organization of multidimensional arrays in POSTGRES. These methods include partitioning of

1 The HDF Group, http://hdf.ncsa.uiuc.edu/HDF5/

arrays and array duplication for different query patterns. Seamons and Winslett (1994) also

implement array chunking, interleaving of data (clustering) and interleaving of different data types

on disk for efficient I/O of arrays. An implementation of a scientific data manager is presented in

(Choudary et al., 2000). This system uses a database to store metadata – search patterns, access

history and file offsets – and files to store the data.

2 Proposed time-sequential data structure
Sequences of images stored in discrete files on disk in their original 2D ordering are not efficient

for time series analysis due to the I/O overhead incurred when constucting a 1D profile through

time. Hence, a specialized per-pixel, time sequential data model and data storage method must be

implemented for improved I/O efficiency. The time series data will be stored in a large single data

file.

Figure 1 illustrates the way data will be structured in the proposed time-sequential representation.

Each spatial pixel coordinate (x,y) is mapped to a unique number i= y× C �x , where C is the

lumns in the original 2-dimensional image. The entire time series at that coordinate is

then stored as a row in the new table, as shown in Figure 1, where the columns represent the time

dimension, and the row index corresponds to the pixel identifier i. Since the original 2-dimensional

grid has effectively been serialised, 2-dimensional queries (e.g., extracting a rectangular region on

a map) will now be decomposed into a set of row queries in the new table. Pixels that were

horizontal neighbours in the spatial representation are now consecutive rows in the serialised

representation, which implies that the contiguity of rows of pixels in the spatial representation is

preserved. This allows operating system level read-ahead and caching to be exploited.

number of co

 t0 t1 ... tn

p 0 v v0, t 0 0, t 1 v0, t n
p1 v v 1, t 0 1, t 1 v1, t n
...
pm vm ,t 0 vm ,t 1 vm ,t n

Figure 1 oring time series data seqentially per-pixel

3 Data structures

s are available for multidimensional data storage. We consider HDF5,

ne

: St

A number of file format

tCDF and a native file system approach for the implementation of the per-pixel data structure

representation.

3.1 HDF5

The HDF5 data model consists of two primary types of objects: datasets and groups. Datasets

are arrays of multiple dimensions where a cell is a simple or compound HDF5 data type. Groups

facilitate the creation of data dependencies. The HDF5 data format supports unlimited file sizes and

an unlimited number of objects, highly generalized data types, spatial set operations, performance

options (e.g., chunking, compression and data shuffling), parallel I/O and unlimited dimension

sizes. The following HDF5 structure is proposed:

1. There will be just the default root group i.e., just the root node.

2. Global variables, such as image height and width and projection information, will be stored

in the header.

3. Each image band, captured over time, is represented as a 2-dimensional array data set that is

a child of the root node. Hence, storing n bands will imply the creation of an HDF5 file with

n datasets. Band data is separated so that additional bands, if required, can be added to the

file at a later stage. Arrays will be implemented as extendible (unlimited size). These arrays

will be chunked.

Alternatively, all the bands at a single pixel location for a single timestep can be grouped as one

element using an HDF5 compound data type. This results in a data structure having the same

structure described above except that it will contain just a single dataset.

3.2 netCDF
NetCDF encompasses multidimensional data in regularly spaced grids. Only netCDF version 3 is

considered in this paper, since netCDF version 4 is similar to HDF5. Some limitations inherent to

the netCDF format are : i) sizes larger than 4GB are difficult to handle; ii) only one dimension may

be unlimited in size and iii) limited number of datatypes. The strength of netCDF lies in its

contiguous layout and its single header file, which means there is little overhead in the data

management. Variable size arrays in netCDF are supported by introducing record variables. In our

case, a variable is a sequence of time series profiles and the record is a single time series signal. To

allow the variable to grow in the unlimited direction, the fixed size records are interleaved along the

unlimited dimension. The netCDF3 64-bit offset was enabled to allow for file sizes greater than

4GB. The file is structured in the same way as the HDF5 - n variables (array or datasets) are created

for the n bands that we wish to store. A spatial block query, as in HDF5, will be decomposed into a

set of row queries.

3.3 Filesystem Data Structures

A file system provides an ideal mechanism to store time series data in a per-pixel fashion: simply

store the entire time series associated with a given (x,y) coordinate in a separate file. An interface

was developed to map a pixel coordinate to its corresponding pixel identifier, which is translated to

a filename; this method leaves the bulk of the management of the data storage to the operating

system. Since the data structure is expected to contain on the order of millions of files (each

representing an entire time series at a given location), a three-level directory structure was created

to avoid the expected performance degradation that a filesystem experiences when too many files

are created in a single directory. Like with the compound datatype HDF5 data structure, the

internal format of each pixel-file was a band-interleaved representation.

This type of data structure has several disadvantages: fixed size operating system disk blocks

result in a significant amount of wasted disk space (slack space), a file has to be opened (and closed

again) for every location read, and the three-level directory structure implies that at least four

filesystem metadata reads must be performed to read each file. On balance, the strengths of this

approach are its relative simplicity, good portability and the ease with which new data can be

appended.

3.4 File setup
Default settings were used to configure the various file formats. These parameters are described

in more detail in the HDF5 and netCDF reference manuals. The native file system contains binary

data in multiple flat files and does not have any adjustable parameters. The data structures are all

implemented on top of the zettabyte file system (ZFS), and were accessed over a Gigabit Ethernet

network using the NFS version 3 protocol.

4 Experimental results

Experiments were conducted on the CSIR’s C4 cluster. A set of 314 MOD09A1 data product

images were used in these experiments. Bands 0, 7 and 12 were imported into the data structures,

corresponding to surface reflectance (16 bits per sample), date flags (16 bits per sample) and quality

flags (32 bits per sample) respectively, all at 500m resolution. Five spatial access patterns, with

respect to the 2D image representation, were considered for experimental analysis, resulting in

block sizes of 1×1, 3×3, 100×100, 50×200, and 200×50 pixels. Given a single spatial extent as

described above, the entire time series is retrieved from a data structure (314 time steps) for the

given block of (x,y) coordinates. To avoid the effects of file caching, each location in a given data

structure is only read once in each experiment. This is achieved by partitioning the data structure

into 64 non-overlapping regions (corresponding to blocks of 300×300 pixels in image coordinates);

queries within each of these blocks are also guaranteed to be non-overlapping. Each test run thus

produces 64 timing results for each of the 5 block sizes specified above.

4.1 Comparison of spatial and time-sequential representations

A performance baseline was established by performing the time series queries on the traditional

image-based format. This approach involves opening each of the 314 files for every timestep of

every query. To facilitate later comparisons, the same queries were executed on an HDF5 time-

sequential data structure. The results presented in Table 1 clearly show the advantage of the time-

sequential representation. Note that even in the worst-case, the time sequential representation is

faster than the traditional image-based structure by a factor of 15.

Table 1: Mean query time (seconds) using a time-sequential data structure versus the original

image format

 Data structure type
Spatial subset Time sequential Original images

1×1 0.048 ± 0.066 33.524 ± 22.732
3×3 0.057 ± 0.070 31.174 ± 6.941
100×100 3.852 ± 0.595 131.070 ± 50.068
50×200 2.327 ± 0.369 188.956 ± 9.048
200×50 9.802 ± 2.637 149.638 ± 4.348

4.2 Comparison of time-sequential data structures

Having established the benefit of a time-sequential representation over an image-based

representation, we now investigate the relative performance of four time-sequential formats. Four

data structures are created and stored on a RAID2 storage system. A stripe of 2 and 3 disks denoted

S2 and S3 are implemented using the ZFS. ZFS offers on-the-fly data compression, so partitions

with and without the compression were included. A second replication of each partition was

created to measure the impact of a data structure's physical location on the disks. The four data

structures are: an HDF5 implementation using separate datasets for each image band (H5); HDF5

using a compound data type for storing band data (H5_C); the netCDF format (NC) and the native

filesystem data structure (FS). From empirical tests, the HD5 chunk size is set to 1×314.

Effectively, a total of 32 data structure/partition combinations were created : 4 data structure types ×

2 RAID striping options × 2 compression options × 2 replications. When reading netCDF and

2 Redundant Array of Independent Disks. A RAID system uses 2 or more disks simultaneously to improve I/O

performance.

HDF5 data structures, file handles were kept open during all the queries i.e., the data structures

were only opened once. The mean throughput of each of the partition types is listed in Table 2.

Table 2: Raw sequential I/O throughput of the various partitions

Partition type Throughput (MB/s)

S2 uncompressed 56.78 ± 0.88
S2 compressed 69.06 ± 2.49
S3 uncompressed 83.32 ± 0.96
S3 compressed 81.39 ± 0.30

To reduce the volume of data, the spatial queries were grouped in small (1×1, 3×3) and large

(100×100, 50×200, 200×50) queries. Within each of these groups, the queries times of the

components were averaged and normalised to represent the time required to retrieve a single time

series. The results of the small queries experiment are presented in Table 3. Despite all the

arguments against the FS data structure implementation, it performed better than the H5 data

structure on these small queries. Note that the NC data structure offered the best performance,

regardless of the partition type. Even on the fastest partition type, effective NC I/O throughput is

only 0.215 MB/s, or 0.264% of the available sequential I/O throughput, which highlights the

inefficiency of such small read requests.

The results for the large queries are presented in Table 4. On the larger reads, the overheads of

the FS data structure (opening a file for every pixel read) becomes the dominating factor, causing it

to finish last in this experiment. The NC data structure still produced the best overall results,

although the difference between the NC and H5_C data structures is comparatively small. Effective

I/O throughput with the NC data structure on the compressed S3 partition rises to 11.97 MB/s, or

14.7% of the available sequential I/O throughput.

Table 3: Mean query time (microseconds per time series) for small queries

 Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 25067 ± 6000 38249 ± 1855 15770 ± 585 14409 ± 1160
S2 compressed 18365 ± 1794 26283 ± 1013 14802 ± 461 14547 ± 1050
S3 uncompressed 20010 ± 1743 29808 ± 1082 13953 ± 741 12771 ± 819
S3 compressed 19767 ± 3050 24015 ± 484 13901 ± 360 11128 ± 1046

Table 4: Mean query time (microseconds per time series) for large queries

 Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 1650.4 ± 47.6 405.0 ± 21.3 246.6 ± 25.8 239.1 ± 2.9
S2 compressed 1436.4 ± 177 324.0 ± 19.5 248.8 ± 24.4 221.4 ± 2.6
S3 uncompressed 1251.9 ± 9.9 387.2 ± 18.7 232.4 ± 23.4 225.1 ± 2.0
S3 compressed 1246.5 ± 11.9 291.5 ± 20.3 218.9 ± 23.9 200.3 ± 2.2

5 Conclusion
The NC data structure provides the highest achievable throughput for both small and large

queries. The H5_C format provides similar performance but is ranked second. The RAID options

had a predictable result: S3 performed better than S2 on both the raw throughput tests as well as the

data structure query tests, which indicates that network bandwidth is not yet a limiting factor.

Owing to the high compressibility of the quality flag band data, the compressed partitions

performed better than their uncompressed counterparts, providing additional proof that network

bandwidth is still adequate. Future work will focus on improved compression strategies, since

compression appears to improve performance without additional investment in hardware.

References
Chilan, CM, Yang, M, Cheng, A and Arber, L 2006, Parallel I/O performance study with HDF5, a scientific

data package, The HDF Group, viewed February 2008, <http://hdf.ncsa.uiuc.edu/HDF5/>.

Abiteboul, S, Agrawal, R, Bernstein, B, Carey, M, Ceri, S, Croft, B, DeWitt, D, Franklin, M, Molina, HG,

Awlick, DG, Gray, J, Haas, L, Halevy, A, Hellerstein, J, Ioannidis, Y, Kersten, M, Pazzani, M, Lesk, M,

Maier, D, Naughton, J, Schek, H, Sellis, T, Silberschatz, A, Stonebraker, M, Snodgrass, R, Ullman, J,

Weikum, G, Widom, J and Zdonik, S 2005, 'The Lowell database research self-assessment',

Communications of the ACM, vol. 48, no. 5, pp. 111–118.

Baumann, P, Furtado, P, Ritsch, R and Widmann, N 1997, 'The RasDaMan approach to multidimensional

database management', in Proceedings of the SAC’97, pp. 166–173.

Baumann, P, Diedrich, E, Glock, C, Lautenschlager, M and Toussaint, F 2003, 'Large-scale

multidimensional coverage databases', in 26th GITA Annual Conference.

Choudary, A, Kandemir, M, No, J, Memik, G, Shen, X, Liao, W, Nagesh, H, More, S, Taylor, V, Thakur, R

and Stevens, R 2000, 'Data management for large-scale scientific computations in high performance

distributed systems', Cluster Computing, vol. 1, pp. 45–60.

Gray, J, Liu, DT, Nieto-Santisteban, M, Szalay, A, DeWitt, DJ and Heber, G 2005. Scientific data

management in the coming decade. SIGMOD Record, vol. 34, no. 3, pp. 34–41.

Li, J, Liao, W-K, Choudary, A, Ross, R, Thakur, R, Latham, R, Siegel, A, Gallagher, B and Zingale, M

2003, 'Parallel netCDF: A high-performance scientific I/O interface', in Supercomputing 2003.

Reiner, B, Hahn, K, Hofling, G and Baumann, P 2002, 'Hierarchical storage support and management for

large-scale multidimensional array database management systems', in Database and Expert Systems

Applications : 13th International Conference, pp. 689–700.

Relly, L, Schek, H-J, Henricsson, O and Nebiker, S 1997, 'Physical database design for raster images in

CONCERT', in Advances in spatial databases, vol. 1262, pp. 259–279, Springer Berlin/ Heidelberg.

Rew, R and Davis, G 1990, 'The Unidata netCDF: Software for scientific data access', in Sixth International

Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and

Hydrology, pp. 33–40.

Sarawagi, S and Stonebraker, M 1994, 'Efficient organization of large multidimensional arrays', in ICDE:

10th International Conference on Data Engineering, IEEE Computer Society Technical Committee on

Data Engineering.

Seamons, KE and Winslett, M 1994, 'An efficient abstract interface for multidimensional array I/O', in

Supercomputing 1994, pp. 650–659.

Skiffington, J and McKelvey, K 2007, 'Raster in the database', in GEOconnexion International Magazine,

pp. 22–23.

Tan, CJ, Blais, JAR and Provins, DA 2000, 'Large imagery data structuring using hierarchical data format for

parallel computing and visualization', in High Performance Computing Systems and Applications, Kluwer

Academic Publishers.

Velamparapil, G 1998, 'Data management techniques to handle large data arrays in HDF', Master’s thesis,

Graduate College of the University of Illinois.

	page0: 214
	page1: 215
	page2: 216
	page3: 217
	page4: 218
	page5: 219
	page6: 220
	page7: 221
	page8: 222

