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Abstract 
Recent improvements in sensor technology, together with increases in data acquisition 

frequency,  have  resulted in a surge in satellite data volume. A single tile from the gridded MODIS 

products, spanning a region of interest of approximately 10° by 10°, is stored as an image 

containing close to six million pixels, with data in multiple spectral bands for each pixel. Time 

series analyses of sequences of such images in order to perform automated change detection is a 

topic of growing importance. Traditional storage formats store such a series of images as a 

sequence of individual files, with each file internally storing the pixels in their spatial order. To 

construct a time series of a single pixel through time using such traditional storage solutions would 

require accessing hundreds of very large files, resulting in significant overheads which limit high-

throughput analyses. We aim to reduce this bottleneck by restructuring the storage scheme for 

typical satellite imagery as temporal sequences in order to reduce overheads and improve 

throughput. Four data structures (using the hierarchical data format (HDF5), network common 

data format (netCDF) and a native file system approach) are implemented and compared in a 

series of experimental read tests to determine which format is most appropriate for implementation 

in the CSIR Cluster Computing Centre's facilities. 

 

1 Introduction and background 

The management of sequences of very large images can be divided into two groups: database 

management systems (DBMS) and data files. Using a DBMS, images are imported into and stored 

using the database internal format. The DBMS usually has a relational database model where data is 
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perceived as a structured table. This format is not suitable for the storage of large and complex 

multidimensional discrete data such as image sequences. The data model implies that pixels are 

stored in tables or fixed size binary large objects (BLOBs). BLOBs are unstructured sequences of 

bytes and, hence, not easily compatible with some of a DBMS’s native types. User defined 

procedures for data analysis suffer the same fate (Abiteboul et al., 2005). Database and related 

technologies must be combined in order to serve the scientific world since support for efficient 

multidimensional data retrieval is limited (Baumann et al., 2003; Skiffington and McKelvey, 2007; 

Gray et al., 2005).  

Techniques for raster data storage and efficient access in databases have been presented in the 

literature. Reiner et al. show that a tiling scheme is the most effective strategy for handling large 

image data in a database (Reiner et al., 2002). Data is split up into subimages and when a region of 

interest is requested, only the relevant tiles are accessed, resulting in significant I/O bandwith 

savings.  Baumann et al. incorporate tiling, spatial indexing and compression strategies into their 

raster database (Baumann et al., 1997, 2003). Compression improves disk I/O bandwidth efficiency, 

while spatial indexing allows quick retrieval of the identifier and location of a required tile. The 

CONCERT architecture uses arbitrary length sequences of fixed page sizes to store image data 

(tiles) (Relly et al., 1997). These page ranges allow a single linear address space to be accessed 

directly. Data buffering is controlled using memory mapping of disk pages. 

Databases do not intrinsically support large n-dimensional arrays, nor do they support efficient 

mapping of them to 1-dimensional space. Hence, flat file storage of large satellite imagery is an 

attractive option for data management and retrieval. The overhead incurred by using a database is 

avoided because the file metadata becomes the “manager”. Several data files can cummulatively 

store terabytes of information which makes them popular in the scientific community.  

Data formats such as HDF51 and netCDF are platform independent, self-describing and support 

the storage of multidimensional arrays (Rew and Davis, 1990; Tan et al., 2000).  They can be 

viewed as database systems since they have a schema for metadata and data manipulation strategies. 

Previous comparisons between HDF5 and netCDF have looked at their parallel implementations: Li 

et al. compare parallel netCDF and HDF5 in a series of tests, concluding that parallel netCDF 

achieves higher parallel performance than HDF5 (Li et al., 2003). In contrast, other researchers 

show that the two file formats are, in fact, comparable in performance (Chilan et al., 2006). 

Several experiments have been conducted in the domain of large array storage and its optimized 

I/O. Array chunking and its effects on I/O performance within the context of the HDF file format is 

reported in (Velamparapil, 1998). Sarawagi and Stonebraker (1994) describe methods for efficient 

organization of multidimensional arrays in POSTGRES. These methods include partitioning of 

                                                           
1 The HDF Group, http://hdf.ncsa.uiuc.edu/HDF5/ 



arrays and array duplication for different query patterns. Seamons and Winslett (1994) also 

implement array chunking, interleaving of data (clustering) and interleaving of different data types 

on disk for efficient I/O of arrays. An implementation of a scientific data manager is presented in 

(Choudary et al., 2000). This system uses a database to store metadata – search patterns, access 

history and file offsets – and files to store the data. 

2 Proposed time-sequential data structure 
Sequences of images stored in discrete files on disk in their original 2D ordering are not efficient 

for time series analysis due to the I/O overhead incurred when constucting a 1D profile through 

time. Hence, a specialized per-pixel, time sequential data model and data storage method must be 

implemented for improved I/O efficiency. The time series data will be stored in a large single data 

file.  

Figure 1 illustrates the way data will be structured in the proposed time-sequential representation.  

Each spatial pixel coordinate (x,y) is mapped to a unique number i= y× C �x , where C is the 

lumns in the original 2-dimensional image. The entire time series at that coordinate is 

then stored as a row in the new table, as shown in Figure 1, where the columns represent the time 

dimension, and the row index corresponds to the pixel identifier i. Since the original 2-dimensional 

grid has effectively been serialised,  2-dimensional queries (e.g., extracting a rectangular region on 

a map) will now be decomposed into a set of row queries in the new table. Pixels that were 

horizontal neighbours in the spatial representation are now consecutive rows in the serialised 

representation, which implies that the contiguity of rows of pixels in the spatial representation is 

preserved. This allows operating system level read-ahead and caching to be exploited. 
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3 Data structures 

s are available for multidimensional data storage. We consider HDF5, 

ne
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tCDF and a native file system approach for the implementation of the per-pixel data structure 

representation. 



3.1 HDF5 

The HDF5 data model consists of two primary types of objects: datasets and groups. Datasets 

are arrays of multiple dimensions where a cell is a simple or compound HDF5 data type. Groups 

facilitate the creation of data dependencies. The HDF5 data format supports unlimited file sizes and 

an unlimited number of objects, highly generalized data types, spatial set operations, performance 

options (e.g., chunking, compression and data shuffling), parallel I/O and unlimited dimension 

sizes. The following HDF5 structure is proposed:  

1. There will be just the default root group i.e., just the root node.  

2. Global variables, such as image height and width and projection information, will be stored 

in the header. 

3. Each image band, captured over time, is represented as a 2-dimensional array data set that is 

a child of the root node. Hence, storing n bands will imply the creation of an HDF5 file with 

n datasets. Band data is separated so that additional bands, if required, can be added to the 

file at a later stage. Arrays will be implemented as extendible (unlimited size). These arrays 

will be chunked.  

Alternatively, all the bands at a single pixel location for a single timestep can be grouped as one 

element using an HDF5 compound data type. This results in a data structure having the same 

structure described above except that it will contain just a single dataset. 

3.2 netCDF 
NetCDF encompasses multidimensional data in regularly spaced grids. Only netCDF version 3 is 

considered in this paper, since netCDF version 4 is similar to HDF5. Some limitations inherent to 

the netCDF format are : i) sizes larger than 4GB are difficult to handle; ii) only one dimension may 

be unlimited in size and iii) limited number of datatypes. The strength of netCDF lies in its 

contiguous layout and its single header file, which means there is little overhead in the data 

management. Variable size arrays in netCDF are supported by introducing record variables. In our 

case, a variable is a sequence of time series profiles and the record is a single time series signal. To 

allow the variable to grow in the unlimited direction, the fixed size records are interleaved along the 

unlimited dimension. The netCDF3 64-bit offset was enabled to allow for file sizes greater than 

4GB. The file is structured in the same way as the HDF5 - n variables (array or datasets) are created 

for the n bands that we wish to store. A spatial block query, as in HDF5, will be decomposed into a 

set of row queries. 



3.3 Filesystem Data Structures 

A file system provides an ideal mechanism to store time series data in a per-pixel fashion: simply 

store the entire time series associated with a given (x,y) coordinate in a separate file. An interface 

was developed to map a pixel coordinate to its corresponding pixel identifier, which is translated to 

a filename; this method leaves the bulk of the management of the data storage to the operating 

system. Since the data structure is expected to contain on the order of millions of  files (each 

representing an entire time series at a given location), a three-level directory structure was created 

to avoid the expected performance degradation that a filesystem experiences when too many files 

are created in a single directory.  Like with the compound datatype HDF5 data structure, the 

internal format of each pixel-file was a band-interleaved representation.  

This type of data structure has several disadvantages: fixed size operating system disk blocks 

result in a significant amount of wasted disk space (slack space),  a file has to be opened (and closed 

again) for every location read, and the three-level directory structure implies that at least four 

filesystem metadata reads must be performed to read each file. On balance, the strengths of this 

approach are its relative simplicity, good portability and the ease with which new data can be 

appended. 

3.4 File setup 
Default settings were used to configure the various file formats. These parameters are described 

in more detail in the HDF5 and netCDF reference manuals. The native file system contains binary 

data in multiple flat files and does not have any adjustable parameters. The data structures are all 

implemented on top of the zettabyte file system (ZFS), and were accessed over a Gigabit Ethernet 

network using the NFS version 3 protocol. 

 

4 Experimental results 

Experiments were conducted on the CSIR’s C4 cluster. A set of 314 MOD09A1 data product 

images were used in these experiments. Bands 0, 7 and 12 were imported into the data structures, 

corresponding to surface reflectance (16 bits per sample), date flags (16 bits per sample) and quality 

flags (32 bits per sample) respectively, all at 500m resolution. Five spatial access patterns, with 

respect to the 2D image representation, were considered for experimental analysis, resulting in 

block sizes of 1×1, 3×3, 100×100, 50×200, and 200×50 pixels. Given a single spatial extent as 

described above, the entire time series is retrieved from a data structure (314 time steps) for the 

given block of (x,y) coordinates.  To avoid the effects of file caching, each location in a given data 

structure is only read once in each experiment. This is achieved by partitioning the data structure 

into 64 non-overlapping regions (corresponding to blocks of  300×300 pixels in image coordinates); 



queries within each of these blocks are also guaranteed to be non-overlapping. Each test run thus 

produces 64 timing results for each of the 5 block sizes specified above. 

 

4.1 Comparison of spatial and time-sequential representations 

A performance baseline was established by performing the time series queries on the traditional 

image-based format. This approach involves opening each of the 314 files for every timestep of 

every query. To facilitate later comparisons, the same queries were executed on an HDF5 time-

sequential data structure. The results presented in Table 1 clearly show the advantage of the time-

sequential representation. Note that even in the worst-case, the time sequential representation is 

faster than the traditional image-based structure by a factor of 15.  

 

Table 1: Mean query time (seconds) using a time-sequential data structure versus the original 

image format 

 Data structure type 
Spatial subset Time sequential Original images  

1×1 0.048 ± 0.066  33.524  ± 22.732 
3×3 0.057 ± 0.070  31.174  ±   6.941 
100×100 3.852 ± 0.595 131.070 ± 50.068 
50×200 2.327 ± 0.369 188.956 ±   9.048 
200×50 9.802 ± 2.637 149.638 ±   4.348 

 

4.2 Comparison of time-sequential data structures 

Having established the benefit of a time-sequential representation over an image-based 

representation, we now investigate the relative performance of four time-sequential formats. Four 

data structures are created and stored on a RAID2 storage system. A stripe of 2 and 3 disks denoted 

S2 and S3 are implemented using the ZFS.  ZFS offers on-the-fly data compression, so partitions 

with and without the compression were included.  A second replication of each partition was 

created to measure the impact of a data structure's physical location on the disks. The four data 

structures are: an HDF5 implementation using separate datasets for each image band (H5); HDF5 

using a compound data type for storing band data (H5_C); the netCDF format (NC) and the native 

filesystem data structure (FS). From empirical tests, the HD5 chunk size is set to 1×314. 

Effectively, a total of 32 data structure/partition combinations were created : 4 data structure types × 

2 RAID striping options × 2 compression options × 2 replications. When reading netCDF and 
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HDF5 data structures, file handles were kept open during all the queries i.e., the data structures 

were only opened once. The mean throughput of each of the partition types is listed in Table 2.  

Table 2: Raw sequential I/O throughput of the various partitions 

Partition type Throughput (MB/s)

S2 uncompressed 56.78 ± 0.88 
S2 compressed 69.06 ± 2.49 
S3 uncompressed 83.32 ± 0.96 
S3 compressed 81.39 ± 0.30 

 

To reduce the volume of data, the spatial queries were grouped in small (1×1, 3×3) and large 

(100×100, 50×200, 200×50) queries. Within each of these groups, the queries times of the 

components were averaged and normalised to represent the time required to retrieve a single time 

series. The results of the small queries experiment are presented in Table 3. Despite all the 

arguments against the FS data structure implementation, it performed better than the H5 data 

structure on these small queries. Note that the NC data structure offered the best performance, 

regardless of the partition type. Even on the fastest partition type, effective NC I/O throughput is 

only 0.215 MB/s, or 0.264% of the available sequential I/O throughput, which highlights the 

inefficiency of such small read requests. 

The results for the large queries are presented in Table 4. On the larger reads, the overheads of 

the FS data structure (opening a file for every pixel read) becomes the dominating factor, causing it 

to finish last in this experiment. The NC data structure still produced the best overall results, 

although the difference between the NC and H5_C data structures is comparatively small. Effective 

I/O throughput with the NC data structure on the compressed S3 partition rises to 11.97 MB/s, or 

14.7% of the available sequential I/O throughput. 

Table 3: Mean query time (microseconds per time series) for small queries  

 Data structure type 

Partition type FS H5 H5_C NC 

S2 uncompressed 25067 ± 6000 38249 ± 1855 15770 ± 585 14409 ± 1160 
S2 compressed 18365 ± 1794 26283 ± 1013 14802 ± 461 14547 ± 1050 
S3 uncompressed 20010 ± 1743 29808 ± 1082 13953 ± 741 12771 ± 819 
S3 compressed 19767 ± 3050 24015 ± 484 13901 ± 360 11128 ± 1046 

 



Table 4: Mean query time (microseconds per time series) for large queries  

 Data structure type 

Partition type FS H5 H5_C NC 

S2 uncompressed 1650.4 ± 47.6 405.0 ± 21.3 246.6 ± 25.8 239.1 ± 2.9 
S2 compressed   1436.4 ± 177 324.0 ± 19.5 248.8 ± 24.4 221.4 ± 2.6 
S3 uncompressed   1251.9 ± 9.9 387.2 ± 18.7 232.4 ± 23.4 225.1 ± 2.0 
S3 compressed   1246.5 ± 11.9 291.5 ± 20.3 218.9 ± 23.9 200.3 ± 2.2 

 

5 Conclusion 
The NC data structure provides the highest achievable throughput for both small and large 

queries. The H5_C format provides similar performance but is ranked second.  The RAID options 

had a predictable result: S3 performed better than S2 on both the raw throughput tests as well as the 

data structure query tests, which indicates that network bandwidth is not yet a limiting factor. 

Owing to the high compressibility of the quality flag band data, the compressed partitions 

performed better than their uncompressed counterparts, providing additional proof that network 

bandwidth is still adequate. Future work will focus on improved compression strategies, since 

compression appears to improve performance without additional investment in hardware. 
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