

Standardized Geoprocessing with 52°North
Open Source Software

- FOSS4G 2008 Workshop Tutorial -

2008-09-29

Bastian Schaeffer

schaeffer@52north.org

This tutorial will guide you through the process of setting up the 52°North WPS,
creating a new Process, executing and exporting the process.

1. Build the WPS
Start eclipse located on your desktop

1.1 Get the source code

Go and get the source from 52North via SVN

Go to File->Import Other Checkout Projects from SVN

Click Next

Click on:

create a new repository location.

Use the following URL:
https://52north.org/svn/geoprocessing

Click Next and accept all Certificates

Navigate to main WPS trunk WPS
And select WPS

https://52north.org/svn/geoprocessing

Click Finish.

 And create a new Project as shown in the next screenshot under General Project

Click Next

And type in 52n-WPS as the project Name.

Click Finish

1.2 Setting the project as an Maven2 Project

Right click on your project in the package explorer. Select
maven Enable Dependeny Management as seen below:

Again, right click on your project, maven Enable Nested Modules.

After that, again right click on your project. Go to properties java build path
source

And remove the resources folders (there are three) from the source folder list.

Switch to the Libraries tab

Select JRE System Library and click on Remove

 Click on Add Library

Select JRE System Library

Click Next

Click on Finish

Switch to the Order and Export Tab.

Select JRE System Library and hit Up

Click OK

1.3 Compile
Right mouse click on the WPS Project. Go to Run as Maven install

As a result, you should see in the console:

1.4 Deploy the WPS as a Web application
You can choose many ways to deploy a Web Application in tomcat. In the following
only one way is described for Tomcat 5.5:

Go to your Tomcat home directory (C:\FOSS4G2008\apache-tomcat-5.5.26) conf

 Catalina localhost

Create a new wps.xml file with the following content:

<Context path="/wps" privileged="true" docBase="<path to your
WPS>\52n-wps-webapp\target\ 52n-wps-webapp-1.0-rc3-SNAPSHOT"
debug="1"/>

where <path to your WPS> points to the folder where your wps project resides.

Hint: path to your WPS = C:\FOSS4G2008\workspace\52n-WPS

Save the file.

1.5 Start Tomcat
You can choose many ways to deploy a Web Application in tomcat. In the following

only Click on the following icon in your Eclipse toolbar

1.6 Test your installation

You can test your application with an additional project:

Import a new Project to your Workspace. Use again the SVN client with the existing
URL:

This time, go to the incubator WPS_Tester trunk WPS_Tester

Click Finish and create a new Java Project:

Now you have to add Junit to the classpath via:

Right mouse click on your project properties java build path libraries add
Library. Select JUnit.

You need to add Junit4 and click Finish.

Click OK

Right click on your WPS_Tester project run as 3 Junit Test

The result should look like:

Your WPS is up and running.

2. Create your own process

2.1 Architecture
In order to understand the big picture, the next two figures remind you of the
52°North WPS Architecture.

2.2 Implementation
In this section you will implement your own WPS algorithm class. This class will be
used to calculate on the fly line simplifications.

2.2.1 Create a new Package
In the package explorer on the left go to 52n-WPS 52n-wps-
server/src/main/java New Package

and enter:

org.n52.wps.server.algorithm.foss4g

as the package name.

Click Finish

2.2.2 Create a new Class
Right click on the newly created org.n52.wps.server.algorithm.foss4g package
and go to New Class

In the following dialog, enter

 DouglasPeukerSimplificationAlgorithm

as the class name.

Click on the Browse button next to Superclass to select a superclass. Type
AbstractAlgorithm and select the class as shown in following figure.

Click OK

Click Finish.

2.2.3 Code
Note that by inheriting from AbstractAlgorithm, you only have to deal with
implementing the business logic in the run method and not with other things like
loading the process description etc. .

As a preparation, copy the following import statements below the toplevel package
declaration:

import java.util.HashMap;
import java.util.Map;

import org.geotools.feature.Feature;
import org.geotools.feature.FeatureCollection;
import org.geotools.feature.FeatureIterator;
import org.geotools.feature.IllegalAttributeException;
import org.n52.wps.server.AbstractAlgorithm;

import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.LineString;
import com.vividsolutions.jts.geom.MultiLineString;
import com.vividsolutions.jts.geom.MultiPolygon;
import com.vividsolutions.jts.geom.Polygon;
import com.vividsolutions.jts.simplify.DouglasPeuckerSimplifier;

2.2.3.1 Get the input data
The

public Map run(Map layers, Map parameters)

method has two parameters. The layers parameter provides parsed complex data.
The parameters parameter supplies literal data. Since a Map datastructure is used,
the actual data is accessible as key-value-pair tupels. The key is the input parameter
name used in the ProcessDescription for a certain input. Therefore, you can obtain
for instance input data, which is required by the ProcessDescription Document under
the name “data” by

layers.get("Data")

Since parsed data is returned back, the generic result type (java.lang.Object) of this
operation has to be casted to the datastructure used by the parser. For GML data,
the parsers return an org.geotools.feature.FeatureCollection.

For our case, delete the generated contents of the run method and enter as the first
two lines:

FeatureCollection collection =
(FeatureCollection)layers.get("FEATURES");
Double tolerance = (Double)parameters.get("TOLERANCE");

in the run method to get both expected input parameters.

2.2.3.2 Business Logic
The actual business logic implements the DouglasPeuker algorithm.

According to Wikipedia (http://en.wikipedia.org/wiki/Ramer-Douglas-
Peucker_algorithm), the algorithm’s idea is “that through a series of points or lines
given, curve by omitting individual points easier. In doing so, the shape of the curve
as such but maintained. It is not the number of targets are controlled, but there is a
gap measure for the maximum distance between the starting points of the curve and
the target curve.

The algorithm now produces an approximation curve consisting of a subset of the
starting points of the curve. For the production of the curve, the output curve
gradually divided into sections, then the algorithm as a separate task through. The
target curve arises from the different approximated sections so that no starting point
of the curve is further from the target curve away, as the predetermined distance
dimension.”

This idea can be applied to each feature. Therefore, we have to iterate through the
previously obtained feature collection by typing:

FeatureIterator iter = collection.features();

 while(iter.hasNext()) {
 Feature feature = iter.next();

Now, we can simplify the feature (after a simple check):

if(feature.getDefaultGeometry() == null) {
throw new NullPointerException("defaultGeometry is null in feature
id: " + feature.getID());

http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

}

and store the user data for further use:

Object userData = feature.getDefaultGeometry().getUserData();

Next, we have to extract the geometry because we want to perform the operation on
the geometry.

try{
 Geometry in = feature.getDefaultGeometry();

Since we want to reuse existing code (and we are lazy developers ;-), we can use the
simplify method on the
com.vividsolutions.jts.simplify.DouglasPeuckerSimplifier class.
Type in the next line:

 Geometry out = DouglasPeuckerSimplifier.simplify(in, tolerance);

After this method call, we can update the feature with the new geometry (with special
checks):

if(in.getGeometryType().equals("MultiPolygon") &&
out.getGeometryType().equals("Polygon"))
 {
 MultiPolygon mp = (MultiPolygon)in;
 Polygon[] p = {(Polygon)out};
 mp = new MultiPolygon(p,mp.getFactory());
 feature.setDefaultGeometry(mp);
 }
else if(in.getGeometryType().equals("MultiLineString") &&
out.getGeometryType().equals("LineString")) {
 MultiLineString ml = (MultiLineString)in;
 LineString[] l = {(LineString)out};
 ml = new MultiLineString(l,ml.getFactory());
 feature.setDefaultGeometry(ml);
 }
 else {
 feature.setDefaultGeometry(out);
 }
 feature.getDefaultGeometry().setUserData(userData);
 }
 catch(IllegalAttributeException e) {
throw new RuntimeException("geometrytype of result is not matching",
e);
 }

And close the loop
 }

2.2.3.3 Return data back
In the last step, the updated features have to be returned back to allow a Generator
to create the requested encoding.

Thus, a new HashMap has to be created:

HashMap<String, FeatureCollection> result = new HashMap<String,
FeatureCollection>();

And the updated FeatureCollection collection has to be dropped in there. The
key "SIMPLIFIED_FEATURES" is determined by the ProcessDescription output
parameter id (See next section).

 result.put("SIMPLIFIED_FEATURES", collection);
 return result;

Press Ctrl+S to save the file.

Hint: If something did not work out, you can find the complete code here.

package org.n52.wps.server.algorithm.foss4g;

import java.util.HashMap;
import java.util.Map;

import org.geotools.feature.Feature;
import org.geotools.feature.FeatureCollection;
import org.geotools.feature.FeatureIterator;
import org.geotools.feature.IllegalAttributeException;
import org.n52.wps.server.AbstractAlgorithm;

import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.LineString;
import com.vividsolutions.jts.geom.MultiLineString;
import com.vividsolutions.jts.geom.MultiPolygon;
import com.vividsolutions.jts.geom.Polygon;
import com.vividsolutions.jts.simplify.DouglasPeuckerSimplifier;

public class DouglaPeukerSimplificationAlgorithm extends AbstractAlgorithm
{

 public String getErrors() {
 // TODO Auto-generated method stub
 return null;
 }

 public Map run(Map layers, Map parameters) {
 FeatureCollection collection =
(FeatureCollection)layers.get("FEATURES");
 Double tolerance = (Double)parameters.get("TOLERANCE");

 FeatureIterator iter = collection.features();
 while(iter.hasNext()) {
 Feature feature = iter.next();
 if(feature.getDefaultGeometry() == null)
{
 throw new
NullPointerException("defaultGeometry is null in feature id: " +
feature.getID());
 }
 Object userData =
feature.getDefaultGeometry().getUserData();
 try{
 Geometry in =
feature.getDefaultGeometry();

 Geometry out =
DouglasPeuckerSimplifier.simplify(in, tolerance);

 if(in.getGeometryType().equals("MultiPolygon") &&
out.getGeometryType().equals("Polygon"))
 {
 MultiPolygon mp = (MultiPolygon)in;
 Polygon[] p = {(Polygon)out};
 mp = new
MultiPolygon(p,mp.getFactory());
 feature.setDefaultGeometry(mp);
 }
 else
if(in.getGeometryType().equals("MultiLineString") &&
out.getGeometryType().equals("LineString")) {
 MultiLineString ml =
(MultiLineString)in;
 LineString[] l = {(LineString)out};
 ml = new
MultiLineString(l,ml.getFactory());
 feature.setDefaultGeometry(ml);
 }
 else {
 feature.setDefaultGeometry(out);
 }

feature.getDefaultGeometry().setUserData(userData);
 }
 catch(IllegalAttributeException e) {
 throw new
RuntimeException("geometrytype of result is not matching", e);
 }
 }
 HashMap<String, FeatureCollection> result = new
HashMap<String, FeatureCollection>();

 result.put("SIMPLIFIED_FEATURES", collection);
 return result;

 }

}

2.2.4 ProcessDescription
Every Process needs a ProcessDescription which will be delivered via the
getProcessDescription operation.
The ProcessDescription has to be created manually. The 52n WPS follows the
convention that an XML ProcessDescription file should be found under 52n-wps-
server/main/resources/<path to class>

in our case we have to create the folder

foss4g

under

52n-wps-server/src/main/resources/org/n52/wps/server/algorithm

Inside this folder, we create a new file

by using the right-mouse click inside the folder. Go to New File.

Label the file with the same name as our implemented algorithm:

DouglasPeukerSimplificationAlgorithm.xml

Double click on the created file to open it.

Click on the source tab in the lower left corner of that window.

Copy the following XML into that file and save it with CTRL+S.

<?xml version="1.0" encoding="UTF-8"?>
<!--This example describes a buffer command that accepts polygon
coordinates in GML, and used a buffer distance in meters to produce a
buffered polygon feature, which is output in GML, in either UTF-8 or base64
encoding. The polygon can be returned directly as output, or stored by the
service as a web-accessible resource. Ongoing processing status reports
are not available. -->
<wps:ProcessDescriptions xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://geoserver.itc.nl:8080/wps/schemas/wps/1.0.0/wpsDescribeProcess_respo
nse.xsd" service="WPS" version="1.0.0" xml:lang="en-US">
 <ProcessDescription wps:processVersion="2" storeSupported="true"
statusSupported="false">

 <ows:Identifier>org.n52.wps.server.algorithm.foss4g.DouglasPeuckerSim
plifyAlgorithm</ows:Identifier>
 <ows:Title>DouglasPeuckerSimplifyAlgorithm</ows:Title>
 <ows:Abstract>Uses JTS implementation. Does not support
topological awareness</ows:Abstract>
 <ows:Metadata xlink:title="spatial" />
 <ows:Metadata xlink:title="geometry" />
 <ows:Metadata xlink:title="douglas peucker" />
 <ows:Metadata xlink:title="GML" />
 <DataInputs>
 <Input minOccurs="1" maxOccurs="1">
 <ows:Identifier>FEATURES</ows:Identifier>
 <ows:Title>input features</ows:Title>
 <ows:Abstract>Just features</ows:Abstract>
 <ComplexData>
 <Default>
 <Format>
 <MimeType>text/XML</MimeType>

 <Schema>http://schemas.opengis.net/gml/2.1.2/feature.xsd</Schema>
 </Format>
 </Default>
 <Supported>
 <Format>
 <MimeType>text/XML</MimeType>

 <Schema>http://geoserver.itc.nl:8080/wps/schemas/gml/2.1.2/gmlpacket.
xsd</Schema>
 </Format>
 </Supported>
 </ComplexData>
 </Input>
 <Input minOccurs="1" maxOccurs="1">
 <ows:Identifier>TOLERANCE</ows:Identifier>
 <ows:Title>Tolerance Value for DP Alg</ows:Title>
 <ows:Abstract></ows:Abstract>
 <LiteralData>

 <ows:DataType
ows:reference="xs:double"></ows:DataType>
 <ows:AllowedValues>
 <ows:Value></ows:Value>
 </ows:AllowedValues>
 </LiteralData>
 </Input>
 </DataInputs>
 <ProcessOutputs>
 <Output>

 <ows:Identifier>SIMPLIFIED_FEATURES</ows:Identifier>
 <ows:Title>smooth geometries</ows:Title>
 <ows:Abstract>GML stream describing the smooth
feature.</ows:Abstract>
 <ComplexOutput>
 <Default>
 <Format>
 <MimeType>text/XML</MimeType>

 <Schema>http://schemas.opengis.net/gml/2.1.2/feature.xsd</Schema>
 </Format>
 </Default>
 <Supported>
 <Format>
 <MimeType>text/XML</MimeType>

 <Schema>http://geoserver.itc.nl:8080/wps/schemas/gml/2.1.2/gmlpacket.
xsd</Schema>
 </Format>
 <Format>
 <MimeType>application/vnd.google-
earth.kml+xml</MimeType>

 <Schema>http://www.opengis.net/kml/2.2</Schema>
 </Format>
 </Supported>
 </ComplexOutput>
 </Output>
 </ProcessOutputs>
 </ProcessDescription>
</wps:ProcessDescriptions>

2.2.5 Configuration
The WPS has to be informed about the newly available process. This can be easily
done by editing the config_wps.xml file, which is located here:

Double click on the file.

Add the element

<Property
name="Algorithm">org.n52.wps.server.algorithm.foss4g.DouglasPeu
kerSimplificationAlgorithm</Property>

As a child element to

<AlgorithmRepositoryList>
<Repository name="LocalAlgorithmRepository"

className="org.n52.wps.server.LocalAlgorithmRepository">

Note that the identifier is the fully qualified class name.

Save the file by pressing CTRL+S

2.2.6 Compile again
Right mouse click on the WPS Project. Go to Run as Maven install

2.2.7 Restart Tomcat

Just click on this Symbol in the toolbar. (If not running start it again).

Check if the new process exists by performing a simple get Capabilities request:

http://localhost:8080/wps/WebProcessingService?Request=GetCapabilities&S
ervice=WPS

You should find something similar to:

 <wps:Process wps:processVersion="2">

<ows:Identifier>

http://localhost:8080/wps/WebProcessingService?Request=GetCapabilities&Service=WPS
http://localhost:8080/wps/WebProcessingService?Request=GetCapabilities&Service=WPS

org.n52.wps.server.algorithm.foss4g.DouglasPeukerSimplificatio
nAlgorithm

</ows:Identifier>
<ows:Title>DouglasPeuckerSimplifyAlgorithm</ows:Title>

</wps:Process>

3 Execute the implemented process
After successfully implementing a new algorithm, we are now able to execute this
algorithm.
This section guides you through the process of executing the implemented algorithm
with the help of the user friendly desktop GIS (uDig).

3.1 Setup uDig WPS Client

Download the 52°North uDig WPS client (org.n52.wps.client.udig_1.2.0.jar) and drop
it into the C:\FOSS4G2008\uDig\1.1-RC14\eclipse\plugins directory

Start uDig from the desktop.

3.2 Add Data
First, we need some data to process.

Go to Layers Add… Web Feature Server

Click Next

Enter http://geoserver.itc.nl:8080/geoserver/wfs as the URL

Click Next

Select the spanish_roads_type layer

Click Finish

https://52north.org/twiki/pub/Processing/GIdaysWPSworkshop/org.n52.wps.client.udig_1.2.0.jar
http://geoserver.itc.nl:8080/geoserver/wfs

3.3 Execute WPS Process
Now we are ready to execute our implemented process with the recently added data.

Note: Make sure that tomcat is running

Go to Layer Add… Web Processing Service

Click Next

Enter the URL of your WPS (http://localhost:8080/wps/WebProcessingService)
(Theoretically you could use the WPS of your neighbour-but it is configured as
“localhost” therefore only accessible via localhost)

Click Next

Select your org.n52.wps.algorithm.foss4g.
DouglaPeukerSimplificationAlgorithm process

Note the input and output description on the right side.

Click Next
Select the previously added spanish_roads_type layer as input features.

http://localhost:8080/wps/WebProcessingService

Enter 1 as the Tolerance Value for DP Alg

Click Next

Click Finish

After the process finishes, you should notice a new layer smooth geometries in your
layerlist.
The result should look similar to this:

4 Export Process to Google Earth

Right mouse click on the newly added WPS Process Result layer (smooth
geometries) export WPS Google Earth Export

Click Next

Enter C:\foss4g_output.kml in the Destination field.

Select Dynamic as the retrieve Strategy

Type in 120 as the update interval

Click Finish

Go to your C: Drive and double click the created foss4g_output.kml file.

Select in the Temporary Place Box your new layer

Note that Google Earth will request your WPS every 30 second for the latest results.

More at:
 http://www.52north.org/wps

or contact Bastian Schaeffer

schaeffer@52north.org

http://www.52north.org/wps

	Standardized Geoprocessing with 52°North Open Source Softwar
	Bastian Schaeffer
	schaeffer@52north.org

